
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Holistic CoDesign

Arun Rodrigues
Scalable Computer Architecture Group

Sandia National Labs

R&A: 5294117

View of the Co-Design Problem

Application writers
purchasers
designers

system procurement
algorithm co-design

architecture research
language research

Multiple Audiences.....
Network

Processor
System

present systems
future systemsX X X

Scale..... Many
Cores

+
Memory

Many
Many
Nodes

Many
Many
Many

Threads
X X

Multi-Physics Apps
Informatics Apps

Complexity.....
Communication Libraries

Run-Times
OS Effects

Existing Languages
New LanguagesX X

Constraints.....
Performance

Cost
Power

Reliability
Cooling
Usability

Risk
Size

Hidden Worldwide Impact
"Total power used by servers [in 2005] represented ...
an amount comparable to that for color televisions. "
-ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. AND
THE WORLD, Jonathan G. Koomey

3741e9 KW-Hrs Total US power consumption

* 3-4% used by computers (>2% servers,
>1% household computer use)

= 112 - 150e9 KW-Hrs US Computer power consumption
* $0.1 $/KW-Hr Retail cost, US Average 2009
= $11 - $15 Billion US$ in compute power

* 3-5
in 2005 US was roughly 1/3 of
servers, by power. This has
probably decreased

= $33 - $75 Billion US$ in worldwide computer
power

= - Yearly GDP of Qatar to Burma

Case Study: Memory is efficient
Memory Access is Inefficient

•DRAM cells require < 1 pJ to
access

•Current DRAM architectures
are not power efficient

•Long distances ➔ high power
•We pay for more than we get
at every level
– Cache: throw away 75-80%
– DRAM Row: Charge 1024B for

each 64B access
– DIMM: Charge 8-9 chips/access
– ~800 pJ/byte total

•DRAM design driven by
packaging constraints
– ~50% of DRAM chip cost is

packaging, mainly in pins
– DIMMs use multiple chips with a

few data pins to achieve high
BW

Design Space Exploration Example
•Design Space for Multiple applications machine

–Inputs: Memory Channels, Memory Technology, Core type,
Cache size (144 configurations)

–Outputs: Energy, Performance, Cost
•Methodology

–Performance models: genericProc, DRAMSim2
–Energy Models: DRAMSim2, McPAT
–Cost Models: IC Knowledge
–Find Pareto-optimal set for Energy, Performance, and Power for

each applicationTable 1: Processor Configurations

Parameter Large Core Small Core
Instruction Fetch/Decode Width 4 2

Instruction Issue Width 8 4
Instruction Issue Out of Order In Order

Instruciton Commit Width 8 4
FPUs 2 1

Maximum Instructions ’In-Flight’ 128 64
Load Store Queue 64 32

Energy/Instruction (pJ) 3365 1245
Si Area (8 cores, no cache)

Si Cost (8 cores, Large cache) $78.79 $68.53
Si Cost (8 cores, Small cache) $57.05 $49.51

For this study, we have two processor cores and two cache configurations
to choose from, for a total of four options. The two cores (detailed in
Table 1) represent a “large” eight-way out-of-order issue agressive core, and
a “small” 4-way in-order issue core. The “large” core offers about twice the
peak performance, but requires almost three times the energy per instruction
(computed with McPAT).

The two cache options are a 32KB 2-way L1 and 256KB L2 “small”
option and a 64KB 2-way L1 and 512KB L2 “large” option, with the large
option requiring roughly twice the power per operation of the small (com-
puted with McPAT). Costs for the cores and cache were computed using the
ICKnowledge tool, assuming XXXXXXX fab process. As can be seen from
Table 1, the size of the cache dominates the overall silicon cost.

costs = pins We The key metrics for this study are energy to solution,
time to solution (performance), and purchase cost.

4.2.2 Simulation Setup

[?] [11]

7

8
Cores

M
C

DIMM DIMM

DIMM DIMM

1x4,2x2, or 4x1
DDR2-2.5, DDR3-2.5,
or DDR3-1.5

Small or Large cores
256 or 512KB caches

Design Space Exploration Results
•Latest memory technology not always best (DDR2
beats DDR3) due to latency, cost

•For these apps & inputs, fewer memory channels is
better

•No “best” processor - depends on tradeoff between
cost, performance, energy

•Better understanding of which configurations are best
for a given application

•Can be used as basis for application optimization

Pareto Optimal Designs

4.2.2. Simulation Setup

To simulate these different setups, we use the SST (Section 4.1.3) with the genericProc
and DRAMSim2 components. We then use an algorithm[20] to determine the pareto
optimal set of configurations for each application (Table 4) and for all the applications
weighted equally (Table 5).

! " #$%�Pareto Optimal Configurations for each application

Application Chan. Memory Core Cache Energy Performance Cost

HPCCG 1 DDR2 25 Small Small 250 510.7 176.86
HPCCG 1 DDR2 25 Small Large 253 541.6 195.88
HPCCG 1 DDR3 25 Small Large 263 566.9 220.20
HPCCG 1 DDR3 15 Small Large 318 585.4 241.48

MD 1 DDR2 25 Large Large 1504 105.9 206.14
MD 1 DDR2 25 Small Small 1106 49.7 176.86
MD 1 DDR2 25 Small Large 1119 50.7 195.88
MD 1 DDR2 25 Large Small 1579 102.0 184.40
MD 2 DDR2 25 Large Large 1480 105.4 213.55
MD 2 DDR2 25 Small Small 1079 49.6 184.27
MD 2 DDR2 25 Small Large 1093 50.6 203.29
gups 1 DDR2 25 Large Small 1777 7.2 184.40
gups 1 DDR2 25 Small Small 1183 6.9 176.86
gups 2 DDR2 25 Small Small 1114 6.6 184.27

pagerank 1 DDR2 25 Large Large 751 162.4 206.14
pagerank 1 DDR2 25 Small Small 667 49.4 176.86
pagerank 1 DDR2 25 Small Large 565 64.1 195.88
pagerank 1 DDR2 25 Large Small 867 126.2 184.40
pagerank 2 DDR2 25 Large Large 748 151.0 213.55

! " #$'�Pareto Optimal Configurations, weighing apps equally

Chan. Memory Core Cache Energy Performance Cost

1 DDR2 25 Large Large 1.00 1.000 206.14
1 DDR2 25 Small Small 1.00 0.464 176.86
1 DDR2 25 Small Large 1.03 0.532 195.88
1 DDR2 25 Large Small 1.49 0.902 184.40

Examining the pareto optimal sets reveals some interesting trends. One memory
channel is generally sufficient, as the additional channels gain little in performance, and
are generally outweighed by the additional cost. The DDR2-25 memory technology tends
to dominate, as its lower cost, and lower bandwidth make it better than the DDR3 tech-
nologies.

4.3. FPGA Emulation

A key rate-limiting factor for a co-design process is the length of time of the feedback
loop on system designs. Application scientists cannot provide feedback to the vendor
until hardware is released for testing and evaluation, however there is a long time lag
between each hardware iteration. While software simulation provides a vital copability
for co-design, hardware emulation can provide significant advantages for node-level co-

Design Space Exploration Results
•Latest memory technology not always best (DDR2
beats DDR3) due to latency, cost

•For these apps & inputs, fewer memory channels is
better

•Better understanding of which configurations are best
for a given applicationTable 2: Pareto Optimal Configurations

Application Chan. Memory Core Cache Energy Performance Cost
HPCCG 1 DDR2 25 Small Small 250 510.7 176.86
HPCCG 1 DDR2 25 Small Large 253 541.6 195.88
HPCCG 1 DDR3 25 Small Large 263 566.9 220.20
HPCCG 1 DDR3 15 Small Large 318 585.4 241.48

MD 1 DDR2 25 Large Large 1504 105.9 206.14
MD 1 DDR2 25 Small Small 1106 49.7 176.86
MD 1 DDR2 25 Small Large 1119 50.7 195.88
MD 1 DDR2 25 Large Small 1579 102.0 184.40
MD 2 DDR2 25 Large Large 1480 105.4 213.55
MD 2 DDR2 25 Small Small 1079 49.6 184.27
MD 2 DDR2 25 Small Large 1093 50.6 203.29
gups 1 DDR2 25 Large Small 1777 7.2 184.40
gups 1 DDR2 25 Small Small 1183 6.9 176.86
gups 2 DDR2 25 Small Small 1114 6.6 184.27

pagerank 1 DDR2 25 Large Large 751 162.4 206.14
pagerank 1 DDR2 25 Small Small 667 49.4 176.86
pagerank 1 DDR2 25 Small Large 565 64.1 195.88
pagerank 1 DDR2 25 Large Small 867 126.2 184.40
pagerank 2 DDR2 25 Large Large 748 151.0 213.55

5 Other opportunities for co-design

6 Future work

7 New technologies and capabilities for co-design

Acknowledgment

Sandia National Laboratories is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the United States Depart-
ment of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

8

Pareto Optimal Designs

Case Study: Reliability vs. Power
Hidden cost of DVFS

•Dynamic voltage/frequency
Scaling reduces power

•➔Reduces temperature
•➔Causes thermal cycling
•➔Reduces reliability

•Need
–Algorithms to balance

temperature, lower power, &
maintain performance

–Arch: Sensors and feedback
–Runtime: Scheduler changes
–App: Awareness

!"#$%&'()*'+*,$-./"#0

! 12)$3-4*5'(#"*3$)$6#3#)7*

! 8.##5*07$7#*! 944#.#"$7#&*7:#"3$.*424.-)6

;<='0%/)>*!?

!"#$%&'()*'+*,$-./"#0

! 12)$3-4*5'(#"*3$)$6#3#)7*

! 8.##5*07$7#*! 944#.#"$7#&*7:#"3$.*424.-)6

;<='0%/)>*!?

(Coskun 2011)

Case Study: Scratchpads vs. Caches

•Power
–32KB 45nm 4-way cache: 142 pJ/read
–32KB 45nm SRAM: 24pJ/read

•Performance
–Scratchpads: Predictable, interface well with DMA
–Caches: Better average performance, requires less

application knowledge
•Programmability

–Scratchpads are usable, as demonstrated by the CELL
and embedded community

–Scratchpads are difficult to use, as demonstrated by the
CELL and embedded comminity

•Turf Wars

Turf Wars
•January 2008 MOHPC Workshop
•Look at memory opportunities for
future HPC systems

•Three groups
–Architecture
–Runtime (libraries, runtime, & OS)
–Applications

•Each came up with
recommendations
–Each group independently brought

up scratchpads
•Exchange & Critique

–Generate positive consensus

Arch

App Runtime

Turf Wars: Architects View

Translation

•We can make a scratchpad,
no problem

•But, the apps people don’t
really know how to use one

•And, the runtime people
won’t let them have it
anyway

Turf Wars: Runtime View

Enabling Programmer Access

The group discussed enabling programmer access through a series of memory hints (for
managing the hierarchy, data movement, and synchronization). It was further noted
that a lack of portability and expressibility inhibits new features. This complements
the conclusions of the applications group.

Intelligent Memory Controllers

As with the architecture and application groups, the programming models group
agrees that there is significant potential utility in an enhanced memory controller.
Critically, such a controller could enable data movement operations (such as scat-
ter/gather), as well as synchronization, particularly in the form of AMOs. AMOs
are attractive because many atomic updates should occur “in memory” without the
cache pollution that would result form processor-based implementations. The mem-
ory controller is the closest place to put these operations.

Once again, the user programmability issue is of significant concern. The question of
how to enable these operations portably and so that they act in a predictable fashion
across a range of architectures is a challenge for all three breakout groups.

Additionally, prior attempts at intelligent memory controller design, most notably
Impulse, ran into problems of virtualization and aliasing because they were not tightly
coupled to the processor. Better processor integration for future intelligent memory
systems is highly desirable. For example, atomic memory operations issued as an
instruction in the processor that occur at the place within the memory hierarchy that
“owns” a particular data item are much more transparent to the programmer than
those that may only be issued at the memory controller.

Hierarchy

The group noted the difficulty of managing the memory hierarchy, and that these hi-
erarchies are becoming increasingly complex. Additionally, requirements for hierarchy
management (both from an architectural and application programmer perspective)
may be conflicting. For example, the desire for cache awareness and cache oblivious-
ness are in conflict.

The use of “local” memory (scratch pads, etc.) shows significant promise, but tends
to also be performed in a non-portable fashion. Additionally, there tend to be few
mechanisms for coping with the expansion of the memory hierarchy.

29

Translation

•We can deal with a
scratchpad

•But, the apps people don’t
like ‘em

•And, the architects won’t
give one to us anyway

Turf Wars: Application View

Applications to Programming Models

The application group was unified in the desire for increased control and the ability
to express application requirements, while simultaneously expressing disinterest in
features that may be short lived or are not portable.

The application group uniformly agreed that additional access to diagnostic and per-
formance information is highly desirable, however, historically it has proven very
difficult to generate a robust, portable, non-ephemeral API to support these features.

Providing the programmer with options is also desirable, pragmas are often broken
or ignored. The interface presented to the programmer should not require the pro-
grammer to think deeply about the implementation of the memory system, rather it
should allow for the expression of programmer knowledge about data access patterns.

31

Translation

•We love scratchpads

•But, the runtime people
won’t let us access them

•And, the architects won’t
give one to us anyway

What is needed
•Simulation/Emulation environments

–Parallel, Scalable, & Multi-scale
–Holistic
–Open, Trusted, and Accepted

•Methodologies
–Validation
–Multi-scale mix-n-match

Multi-Scale
• Goal: Enable tradeoffs

between accuracy, flexibility,
and simulation speed
– No single “right” way to

simulate
– Support multiple

audiences
• High- & Low-level interfaces
–Allows multiple input types
–Allows multiple input

sources
• Traces, stochastic, state-

machines, execution...

Multiscale Parameters

High-Level Low-Level

Detail Message Instruction

Fundamental
Objects

Message, Compute
block, Process

Instruction,
Thread

Static
Generation

MPI Traces,
MA Traces

Instruction
Trace

Dynamic
Generation State Machine Execution

Holistic Simulation

•Design space includes much more than simple
performance

•Create common interface to multiple technology libraries
–Power/Energy
–Area/Timing estimation

•Make it easier for components to model technology
parameters

Co
m

m
on

 T
ec

h
A

PI McPAT

Cacti

Sim-Panalyzer

Others

Component

SST Simulation Project Overview

Technical Approach

Goals
•Become the standard architectural
simulation framework for HPC
•Be able to evaluate future systems
on DOE workloads
•Use supercomputers to design
supercomputers

•Parallel
•Parallel Discrete Event core with
conservative optimization over MPI
•Holistic

•Integrated Tech. Models for power
•McPAT, Sim-Panalyzer
•Multiscale

•Detailed and simple models for
processor, network, and memory

•Open
•Open Core, non viral, modular

Consortium
•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Status
•Current Release (2.1) at
code.google.com/p/sst-simulator/
•Includes parallel simulation core,
configuration, power models, basic
network and processor models, and
interface to detailed memory model

Open Simulator Framework

Parallel DES

MPI
Checkpointing

Statistics

Power Area
Cost

Configuration

Services

Vendor
Component

Open
Component

Vendor
Component

Open
Component

Simulator Core

•Simulator Core will provide...
–Power, Area, Cost modeling
–Checkpointing
–Configuration
–Parallel Component-Based

Discrete Event Simulation
•Components

–Ships with basic set of open
components

–Industry can plug in their own
models

•Under no obligation to share
•Open Source (BSD-like) license
•SVN hosted on Google Code

What is needed

•Validation Methodologies
–Where are our error bars?
–How much error can we live with?
–What is the standard for validation of things which do
not exist?

•Multi-scale Methodologies
–Can we mix and match simulation models of different
scale?

–When we mix a high-fidelity and low-fidelity model how
is the error effected?

The New Project Polygon
•“Fast Cheap or Good” no
longer enough

•New Factors
–Resilience
–Risk
–Programmability
–Power
–Energy
–Cost (purchase vs. TCO)
–Commercial adoption
–“Social” Issues

•Community needs tools!
–Simulation
–methodologies

